
Inr. J. Hear Mua, Tramfrr Vol. 19. pp.879 892. Pergamon Press 1976. Pruned in Great Bntam 

ON THE AVERAGE TRANSFER COEFFICIENT 
IN PERIODIC HEAT EXCHANGE-II 

SEMI-INFINITE SOLID BODY 

J. KERN 
Department of Chemical Engineering, University of the Witwatersrand, 

2001 Johannesburg. South Africa 

(Rrceived 2 June 1975) 

Abstract-In extension of a previous study this work describes periodic heat exchange between a gas 
and a semi-infinite solid body. The gas phase undergoes a stepwise change in temperature with the step 
length as a free variable. A boundary condition of the third kind is considered and for a time-independent 
heat-transfer coefficient an analytic solution to the problem is developed. 

A more realistic situation, where the transfer coefficient changes with gas temperature, is solved by a 
forward-marching process. These numerical results are correlated on the basis of a suitable average heat- 
transfer coefficient to be employed in the analytic solution. Thereby the results become easily adaptable 

to further techniques aimed at optimizing periodic exchange processes. 

To H. Hausen in recognition of his pioneering work 

NOMENCLATURE 

flu&solid heat-transfer coefficient 

[Wm-‘K-l]; 
thermal conductivity of solid [Wm ’ K ‘1: 
heat-flux density [Wm- ‘1; 

time [s]; 
temperature [K], referring to solid if without 
subscript; 
overall heat-transfer coefficient 

[Wm-2 K-l]; 
coordinate from solid surface to interior 

[ml; 
thermal diffusivity of solid [m2 s-l]; 
phase angle of heating [rad] ; 
oscillation frequency [s _ ‘1. 

Dimensionless quantities 

Bi, = h j(cc/to)/k Biot number; 

Bi*, = Bi/c$f) corrected Biot number: 

H, 
Y 

= 4T,z-T,,) 
heat-flux parameter; 

j. n, integer; 

Y, = L./~/(*/O) depth coordinate; 

A,, difference between extreme solid 
temperatures according to equation (7); 

0, solid temperature; 

fl,, arithmetic average of extreme solid 
temperatures according to equation (8); 

r, time coordinate. 

Subscripts 

e, exponential; 

Y> fluid ; 
k harmonic; 

1, during cooling; 

2, during heating. 

HMT Vol. 19. No 8 E 

1. INTRODUCTION 

PERIODIC heat exchange between a fluid and a solid 

phase has been studied extensively in connection with 
the design and performance of thermal regenerators. 

However, the analytic treatment still suffers from the 
fact that the general problem is three-dimensional, i.e. 
the solid temperature varies with time, depth from the 
solid surface and in the direction of gas flow. Usually, 
either the second [I] or both second and third variable 
[2] are subjected to some approximation procedure 
before the final solution is obtained. A brief summary 
of the state-of-the-art has been given recently [3]. In 
view of this background the present study neglects the 
third variable completely which would apply to an 
infinitely short regenerator or to a gas flow of infinite 

thermal capacity. 
On the other hand there are many processes where 

a solid body is merely heated and cooled periodically 
over its entire exchange surface. The outside wall of 
a building, the brick lining of a rotary kiln or the work 
roll of a hot strip mill are just a few examples where 
one is interested in either the storage capacity or the 
extreme solid temperatures or both. On the basis of a 

thermal analysis the important parameters can be 
varied towards an optimum design of the element or 
apparatus. The inside wall temperature and heat-flux 

distribution determines the heating policy in a building 
[4]. the periodic heat flux from the charge to the lining 
and from the lining to the gas affects the length of the 
kiln required for a certain duty [S, 61 and the maximum 
surface temperature of the work roll decides on the 
amount of additional cooling [7]. 

The theoretical study of such problems can be done 
under various assumptions about the nature of the 
boundary condition or the solid body itself. With a 
boundary condition of the first kind, i.e. known 
periodic solid---surface temperature and for a semi- 
infinite solid body the solution is well-established [8]: 
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J-‘Ic;. I. Illustration of the general problem 

the same applies to a boundary condition ofthc second 

kind or known periodic flux at the surface [9, lo]. 
However, often it is certainly more realistic to consider 
a boundary condition of the third kind which means 

specifying the periodic Auid temperature together with 
the heat-transfer coefficient and solving for the solid 
temperature. This problem was analyzed for a sinu- 

soidal fluid temperature distribution, constant heat- 
transfer coefficient and solid body of any thermal 
thickness [I 11. Unfortunately, in many technical situ- 
ations the fluid temperature is not sinusoidal and, to 

complicate things even more the heat-transfer coef- 
ficients during heating and cooling differ markedly 
from each other. The latter may be due to either 

different temperature levels only or to the presence of 
two different fluid phases as is the case for the rotary 
kiln, A straightforward numerical study of each specific 

problem could in principle yield the required results. 
but we believe that a stepwise change in fluid tem- 
perature and heat-transfer coefficient together with a 
variable step length of heating is suthciently realistic 
tojustify a general treatment similar to that of Groeber 

['Il. 
In a previous article [3] we have considered the 

solid body without thermal resistance and subjected 
it to the above boundary condition. Following a similar 
approach we now solve the problem for the semi- 

infinite solid: a general analytic solution for a constant 
heat-transfer coefficient and a variable phase angle of 
heating is developed first; then follows a second, in this 
case numerical approach in which the heat-transfer 
coefficient varies simultaneously with the fluid tem- 
perature. The comparison of both results leads to an 
average heat-transfer coefficient for use in the general 
analysis. The advantage of this aforegoing over other 
possible ones is that we eventually obtain a closed- 
form solution of physically correct structure although 
the problem, to our knowledge, cannot yet be solved 
analytically. 

It is noted that we prefer not to present the general 
problem of the finite solid body of finite thermal con- 
ductivity; the mathematical approach is much the same 
but the equations become prohibitively voluminous 
without providing significantly more physical insight. 
The really valuable information in that case is the 
temperature oscillation in the symmetry axis of the 

body; its relative magnitude decides on the applicability 
of this or the previous [3] analysis. However, once the 
general approach is established the main results of the 

general problem will be presented in a brief follow up. 

2. FORMULATION OF THE PROBLEM 

It is assumed that the semi-infinite wall is homo- 
geneous and that its physical properties are indepen- 
dent of temperature. Then the extreme temperatures 
and storage capacity are evaluated from the solution 
to the following Fourier equation (see Fig. 1 and the 
Nomenclature): 

?T ?* T 

I/ 
= ,x-pi (1) 

( y- 

The boundary condition on the exchange surface J‘ = 0 
reads 

(2) 

where both the gradient and the value of ‘r, arc tm- 
known. The second boundary condition simply states 
that at J’ = x the temperature oscillation has dis- 
appeared. i.e. 

T II. = , = constant. (3) 

As in any periodic problem, where one is not interested 
in the transient behaviour. the initial condition is 
expressed in the time-dependent boundary condition 
(2). It is pointed out that this equation becomes non- 
linear when the heat-transfer coefficient varies with 
time. For this reason the analytic treatment is limited 
to a constant transfer coefficient. 

The fluid temperature & is expressed in terms of a 
Fourier series, hence 

T,(r)= r,,+(T,Z-T,,) 

This is inserted in equation (2) whereby 

emerges as an obvious dimensionless temperature. The 
inclusion of the integrated average of the fluid tem- 
perature is feasible as long as the heat-transfer cocf- 
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ficient is the same during heating and cooling; then 

the integrated average of the solid temperature is the 
same. 

The reference length is chosen in analogy to the 
“penetration thickness” commonly employed in tran- 
sient problems; it is in fact an inverse Fourier number 
modified for the periodic case. With 

Y = y/,/(sc/oj) and r = tw 

the transformed problem becomes 

iH (1% 

c’r tY 
-=? 2’ (la) 

and 

Oly=, = 0. 

Here we have introduced the Biot number 

(3a) 

&=’ M 

J! > k w 

to account for varying physical properties of the solid 
as well as frequency of the temperature oscillation. 
Again, it is seen that this is a true parameter only if 
the heat-transfer coethcient stays constant or if at least 

a time-independent average can be used. Equation (3a) 
demonstrates the importance of Y rather than y for 

the analysis to be applicable; the solid does not have 
to be infinitely thick in a geometric sense. 

3. ANALYTIC SOLUTION FOR CONSTANT 

HEAT-TRANSFER COEFFICIENT 

The solution of equation (1 a) subject to the boundary 
conditions (2a) and (3a) can be obtained in different 

ways. Being interested only in the periodic steady 
state we prefer to employ the straightforward method 
of complex temperature as outlined elsewhere [12]. 
The development is given in Appendix A and as a 
final result the solid temperature becomes 

x ev II - YJ(nn)l (C 1 cos [27cnr - Y J(7nr,] 

+Czsin[27rnr- YJ(nn)]) (5) 
1 

where 

and 

c, = 
1 + J(7cn)/Bi 

I + 2 ‘(nn)/Bi + 2nn/BiZ v 

c2 = 
J(MlBi 

1 + 2 d(nn)/Bi + 2znJBi’ 

The combination of the two trigonometric functions 
to one with argument 

would be misleading because it was shown previously 
[3] that with a stepwise change in fluid temperature 

there is no time lag between fluid and solid-surface 

temperature. 
The further processing of equation (5) depends on 

the considered applications. In general, one would be 
interested in the extreme solid temperatures, to be 
found on the surface, as well as in the amount of 
energy stored and released per cycle or per unit time. 

Extreme temperatures 

In the symmetric problem [l l] the difference 
between maximum and minimum surface temperature 
is sufficient to find the extreme values whereas here the 
arithmetic mean or some other reference value is re- 
quired in addition. For two combinations of phase 
angle of heating and Biot number the same difference 
between maximum and minimum surface temperature 
may result but the absolute values could be quite 
different. 

The surface temperature is given by 

x [C, cos(2nn~) + CZ sin(2nnr)] 1 (6) 

From the above remarks and Fig. 1 we conclude further 

that 

0 S.IndX -&in = Oslw4noj - 8s lt4rmi4nw, 5 As 

and 

It is seen that, although equation (7) is of a particularly 

simple structure, the convergence of the series is poor 
especially when the Biot number is large. The reason 
for this becomes obvious when one considers the 
surface-temperature profile according to equation (6); 
for illustration two different cases are plotted in Fig. 2. 
At the switching point the heat flux must be dis- 

continuous because it changes sign. There results a 
kink in the surface temperature which is difficult- 
though not impossible-to represent by a Fourier 

series. The latter tends to round off the corner and 
with larger Biot number an increasing number of terms 
has to be considered in the series. Equation (7) is 
represented in Fig. 3 showing the effect of variable 
phase angle of heating on the surface-temperature 
oscillation. The series was taken up to 3000 terms for 
Bi < 2 and up to 8000 terms for larger Biot numbers. 
It may be pointed out that a straightforward evalu- 
ation’ of the Fourier series breaks down at such large 
arguments of the trigonometric series; instead, some 
recurrence relations [13] had to be used so that an 
eficient solution could be generated without any loss 
in computation accuracy. Still, the comparison with 
numerical results, to be discussed later, shows a dis- 
crepancy of up to 4% which is equivalent to a -2% 
error in the maximum temperature. On the other hand, 
such an error only occurs at large Biot numbers where 
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FIG. 2. Sol&surface temperature in the periodic steady-state (4 = n.2.11, = hzj; 
comparison between analytic and numerical solution. 

0 Ii, numerical 

I.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 90 10-O 

-BI 

FIG. 3. Difference between maximum and minimum solid temperature at uniform 
heat-transfer coefficient and with relative heating time as parameter. 

the maximum solid temperature is close to the fluid 
temperature and a slight under-estimation is seldom 
critical. 

When comparing Fig. 3 with the corresponding 
results for the thermally thin solid [3] one has to bear 
in mind the different definitions of the Biot number. In 
spite of the same physical meaning of both parameters 
a numerical comparison is inadmissible because they 

do not employ the same variables. However, a quali- 
tative comparison as to the influence of the phase angle 
of heating demonstrates a major difference between the 
two systems. Here, the change in amplitude with 
decreasing 4 is much smaller than in [3] which is 
explained as follows: having a certain resistance to 
absorb energy the solid needs some time to do so; 
during this time a solid layer next to the surface will 
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settle very quickly at a temperature such that the flux 
of energy arriving from the fluid can be accommodated 
in the interior. Hence a decrease in 4 would only cut 
off the tail of the temperature-time curve where changes 
are small. This is not so with a slab of infinite thermal 
conductivity. There the temperature changes exponen- 
tially which means that differential changes are signifi- 
cant over the entire heating period as long as A, is not 
close to one. Consequently, a decrease in ct, has a more 
direct effect on the final temperature. 

On the other hand, we conclude from this difference 
in behaviour that neither an exponential nor a har- 
monic average of the heat-transfer coefficient is suitable 
to simplify the analytic result, We recall from [3] that 
with the exponential average of h, inserted in the Biot 
number, all the curves for 4 < rr were projected onto 
the curve for 4 = rr. It is verified easily that, in the 
present case, errors of 40% or more could result from 
using either of the two averages. This may demonstrate 
that the commonly considered concept of a harmonic 
average is not feasible. 

In order to evaluate extreme temperatures it is con- 
venient to use the arithmetic mean of maximum and 
minimum temperature together with equation (7). 
From equation (6) we find that 

K mitx + T,,min 
_Lp-T. 

8,s 2 
‘CT1 

Tg2 - &I 

2. (8) 

Here the errors at the times of switch-over are sub- 
tracted which is the reason for the improved conver- 
gence of the series. Equation (8) is easily evaluated and 
as the results are symmetric to 0, = 0.5 only the lower 
half is shown in Fig. 4. It is obvious that e.g. 

B,(f$ = :7-c, = 1 -U,(f#J = x/2). 

For large Biot numbers 

f7,+0.5 since A,-+ 1, 

whereas in the limit of 

4 Bi-,O then a,-+-, 
2R 

the integrated average of the fluid temperature. The 
latter result is evident because the integrated averages 
of fluid and solid temperature must be the same as long 
as h is constant. With decreasing fluctuation, on the 
other hand, arithmetic and integrated average approach 
each other. 

Storage capacity 
The energy released per unit time is given by 

4 = -~o,~~~:~~~‘4ru’~li=0dt. (9) 

In terms of the dimensionless quantities introduce 
earlier this becomes 

4 
H = h(T,, - T,,) 

= -A s,k’:,“l’“‘~~rzOdr. (9a) 

The heat-flux parameter H, which was already intro- 
duced previously [3], can be interpreted as a correction 
factor to the heat-transfer coefficient. H reaches a 
maximum value at infinite rotational frequency w 
because then the process becomes equivalent to the 
indirect heat-exchange process with fluids at Tg2 and 
‘& and heat-transfer coefficients h (see [14]). In that 
case 

q=h(Tgz-T,)=h(T,-T-1) 

01 

4 = U(T,z-T,i) 

with 

Gfh(2n-$) 

Therefore 

HB. o _ #(2x-#) 
I’ -- 

4n= 

which is largest in the symmetric case, i.e. 

HBi+O(Q) = n) E Hm,, = 0.25. 

0 
1.0 2a 3.0 4-o 5.0 6.0 7.0 8.0 9.0 10.0 

-Bi, Bi* 

FIG. 4. Arithmetic average of maximum and minimum solid temperature; the curves 
are symmetric to f3, = 0.5. 

00) 

(11) 
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Smaller or larger values of 4 result in a reduced value 
of H which agrees with the concept of the harmonic 
average. When Bi > 0 then H must decrease further 
because the two processes given by equation (IO) do 
not occur simultaneously any more. 

From the definition of the Biot number WC also 
find that 

Bi+0 for k-x: 

hence in the limit this analysis should yield the same 

result as the previous one [3]. In fact, it was shown 
there that the same equation (11) holds for the solid 

of negligible thermal resistance. 

based on a modified heat-transfer coefficient (see [ 151) 
is preferential in the symmetric problem but turns out 

to be less convenient in the more general problem 

treated here. 

-t. NUMERIC’AL SOLL’TIOIX OF THE CEKERAL PROBLEM 

As pointed out before the strict analytic treatment 
of the problem is limited to a linear boundary condition 

(2a). It seems that with a time-dependent heat-transfer 
coefficient either an approximate analytic or a numcri- 

cal method has to be employed. The majority of the 
former have, however. only been developed for tran- 
sient problems with a well-defined initial condition 

0 1 I I 

I.0 2.0 3-o 4.0 90 6.0 7.0 8.0 9.0 IO.0 

-----L3i 

b I(,. 5. Dimensionless storage capacity of solrd body at uniform heat-transfer 
coefficient. 

The evaluation of the integral in equation (9a) is 
lengthy but elementary and may be omitted. The final 
result is 

(Jn)[ 1 + 2J(rrn)/Bi] sin2(n4/2) 

and is illustrated in Fig. 5. It is seen that with all other 
variables staying constant an infinite rotational fre- 
quency yields a maximum storage capacity. This result 
has some impact on the design of rotary heat-exchange 
equipment because it will lead the way towards estab- 
lishing optimum operating conditions for such pro- 
cesses. 

An unfortunate feature of the chosen set of par- 
ameters is that h appears in both the Biot number and 
the heat-flux parameter. From Fig. 5 one may conclude 
that with increasing h and hence Bi the storage capacity 
would drop whereas, in fact, the opposite is found by 
evaluating q at two different Biot numbers. However, 
it was preferred to operate with established and directly 
applicable parameters rather than introduce new ones. 
The alternative concept of defining a Nusselt number 

[16. 171. This is also the case with the heat-balance- 
integral method [18] which is essentially a sophisti- 
cation of the Ritz-Galerkin scheme [19]; although it 
should be possible to modify this method for use in 
the periodic problem a reasonable accuracy would lead 
to rather complicated approximation functions. An- 
other approach discussed recently [20] and directly 

applicable to periodic problems again requires that the 
boundary condition be linear in time. 

A disadvantage of the straightforward numerical 
methods is that the entire transient behaviour has to 
be evaluated in time and space; the periodic steady 
state is reached when no significant changes in solid 
temperature are experienced from one cycle to the next. 
Although theinitial condition, i.e. the temperature level 
at zero time can in principle be arbitrary it still has a 
major effect on the required computation time. If this 
level is unknown then both the explicit (finite-differ- 
ence) and the implicit (CrankkNicolson) methods may 
become prohibitively time-consuming. Even with sym- 
metric problems such a direct approach is often ex- 
tremely expensive [21]. Jaeger [22] suggested a method 
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based on the superposition of incremental analytic 
solutions. For a linear boundary condition only a set 

of algebraic equations needs to be solved in order to 
yield an overall analytic solution, but for the non-linear 
boundary condition an iterative numerical technique 
has to be applied which, adapted to our problem, 
becomes rather involved. 

problem, given by equations (l)-(3), is Laplace-trans- 

formed with respect to time (see Appendix B) and 

solved in terms of the unknown surface heat-flux. The 
inversion via the convolution integral yields a non- 
linear Volterra integral equation of the form 

Finally, a procedure suggested by Bentwich [23) may 
be discussed briefly; it is essentially a Fourier-series 
approach to the complete problem. By developing the 
heat-transfer coefficient It as well as the Ruid and solid- 
surface temperatures into Fourier series and breaking 
off the series for h after n terms one obtains from 

boundary condition @a) a set of n algebraic equations. 
From these the coefficients of the surface-temperature 
series are determined. By this aforegoing the transient 
stage is eliminated: in addition, the truncated series for 
(/IT,) may, for many applications, be more realistic 

because a mathematic step is unlikely to occur in a 
real process. The only restriction is that n would be 
limited to values < 10 in order to keep the calculation 

effort within reasonable limits. However, a direct com- 
parison with the analytic results of Section 3 then 
becomes difhcult because this approach may lead to 

substantially reduced values of A,. Even with a constant 
value of tr the relative accuracy wiII not be the same 

for all values of 4) and Bi so that the specification of 
a suitable average of h to be used in equation (7) 
becomes unreliable. Therefore, in spite of its merits, this 

procedure was not adopted for the present study. 
Instead, a modified numerical technique, outlined in 

Appendix B, is used. Having started with an elaborate 
finite-difference scheme we realized that the correct 
initial temperature level in the slab is absofuteiy essen- 
tial for convergence to periodic steady state within a 

reasonable time. The reason for this is quite simple: 
once the wrong level has been chosen only the difference 
between absorbed and released energy is available for 
adjustment within one cycle. However, the solid is per 

assumption of infinite ‘*thermal” thickness so that a 
large number of cycles is needed to achieve a significant 
rise or drop in the temperature level (theoretically an 
infinite number of cycles is necessary). As small time 
and space intervals have to be chosen for reasons of 
accuracy and stability also an iterative procedure on 
the basis of, e.g. ten cycles had to be abandoned, 
particularly in view of the required amount of results 
(see Fig. 7). In conclusion, it was found that the straight- 
forward numerical approach is only suitable as long as 
the heat-transfer coefficient is constant; then the initial 
temperature level is set to the integrated average of the 
fluid temperature (see the discussion in Section 21. With 

a variable heat-transfer coefficient we do not know the 
temperature at Y + x so that this method will not be 
successful. 

The scheme which was eventually adopted is basi- 
cally similar to the one discussed recently in connection 
with the transient problem of the quenching of a solid 
sphere [24]. It evaluates the first few cycles very 
rapidly so that a wrong initial temperature level can 
be adjusted before substantial time is wasted. The 

This is inserted in the boundary condition (2). A 
forward-marching process is then developed by split- 
ting the integral into suitable time intervals Alt and 
assuming that within such an interval the flux ys or 
its mean value is independent of time. Thereby the 
integral can be solved and the final relation for evalu- 
ating the surface Hux at time (!iAr) becomes 

Once the flux is known one determines the surface 
temperature at @At) from the original boundary con- 
dition (2). The important sections of two different 

profiles 0,(z) at d, = 7~16 are plotted in Fig, 6; in one 
case the heat-transfer coefficient is constant whereas 
in the other the transfer coefficient during heating is 

ten times as large as during cooling. The latter case 
would represent approximately the situation in the 
brick lining of a rotary kiln. 

The advantage of this scheme is that the space 
coordinate has been eliminated whereby the necessary 
calculation effort is reduced substantially. On the other 
hand, the nature of the convolution integral implies that 
the flux at each point in time be calculated from all 
the previous values down to the start. We effectively 

calculate the transient behaviour and periodicity is 
introduced only by changing the values of 11 and T, 
at multiples of the cycle time. In addition, the complete 
series in equation (14) must be evaluated for each 
increase in n because at each time the previous values 

of q,, are multiplied by different weighting factors. 
Therefore. the calculation time blows up dramatically 
for a large absolute time, i.e. number of cycles. Still, 
we found that once the correct starting level of tem- 
perature has been established- this can be done by 
including certain heuristic steps in the computer 
program-the periodic steady state, within limits of 
accuracy, is reached after a maximum of ten cycles. 

Each cycle was split into 60 and under extreme con- 
ditions into 120 time intervals; the latter was necessary 
for large changes in temperature over a small period 
of time. Then the average flux q,.,$ as defined in 
Appendix B is becoming increasingly inaccurate (see 
Fig. 6, top curve). The phase angle of heating was varied 
such that 

and within each vaalue of # the ratio of heat-transfer 
coefficients was chosen as 

k,.ihi = 1; 2; 3; 4; 5: IO. 
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FIG,. 6. Numerically evaluated temperature profiles on the solid surface: the 
numbers refer to those in Table I. 

FIG,. 7. Correlation of the numerical results for A,, on the basis of a time-weighted 
harmonic average of the heat-transfer coefficient. 

Together with a constant value of 

\~(ricv)/k = 0.0765 

and heat-transfer coefficients 

IO < h, ,< 40 

lO<hz <400 

the covered range of Biot numbers becomes the same 
as in Figs. 3-- 5. It may be pointed out that ratios of 
112illl < 1 are covered as well due to the symmetry of 
the problem, e.g. 

A,, H(hJr , = 0.2; $/2x = 0.25) 

= A,. H(h2.;hj = 5: cj.‘Zn = 0.75). 
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FIG. 8. Correlation of the numerical results for H on the basis of a time-weighted 
harmonic average of the heat-transfer coefficient. 

No 
lo 
11 

12 

13 

14 

15 

20 

21 

22 

23 

24 

25 

30 

31 

32 

33 

34 

35 

40 

41 

42 

43 

44 

45 

50 

51 

52 

53 

54 

55 

0.863 0.164 1.561 

1.201 0.143 2.173 

1.470 0.130 2.659 

1.750 0.117 3.173 

2.673 0.089 4.836 

@ hz hk Qs *s H.h 

n/6 20 20 0.210 0.3534 1.194 

40 0.315 0.5255 1.844 

60 0.375 0.6212 2.238 

80 0.410 0.6809 2.489 

100 0.435 0.7183 2.661 

200 0.491 0.8056 3.096 

n/3 20 20 0.288 0.4377 2.028 1.530 0.850 

40 0.396 0.5956 2.875 1.457 

60 0.448 0.6706 3.310 1.913 

80 0.479 0.7119 3.581 2.267 

100 0.498 0.7381 3.758 2.550 

200 0.539 0.7897 4.154 3.400 

r/2 20 20 0.349 0.4853 2.636 1.530 1.148 

40 0.452 0.6221 3.514 1.836 

60 0.500 0.6793 3.935 2.295 

80 0.525 0.7091 4.177 2.623 

100 0.540 0.7278 4.330 2.869 

200 0.572 0.7634 4.661 3.531 

B 20 20 0.500 0.5338 3.373 1.530 1.530 

40 0.580 0.6086 3.988 2.040 

60 0.610 0.6333 4.230 2.295 

a0 0.624 0.6452 4.360 2.448 

100 0.635 0.6486 4.418 2.550 

200 0.650 0.6608 4.582 2.782 

n/2 20 20 0.651 0.4853 2.636 

40 0.700 0.5111 2.837 

60 0.715 0.5171 2.902 

80 0.722 0.5193 2.934 

100 0.726 0.5205 2.950 

200 0.733 0.5212 2.984 

0.183 1.140 

0.151 1.955 

0.132 2.567 

0.121 3.041 

0.113 3.421 

0.094 4.562 

0.176 1.325 

0.146 2.120 

0.131 2.650 

0.122 3.028 

0.116 3.313 

0.101 4.077 

0.169 1.530 

0.150 2.040 

0.141 2.295 

0.136 2.448 

0.133 2.550 

0.126 2.782 

1.530 1.148 0.176 1.325 

1.311 0.166 1.514 

1.377 0.161 1.590 

1.412 0.159 1.631 

1.434 0.157 1.656 

1.481 0.154 1.710 

Table 1. Extract of numerical results for variable ilt, 112 and # 

887 
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The results are all displayed in Figs. 7 and 8. to be 
discussed later. However, there they are already hidden 
in a specifically processed form so that it may be useful 

to present at least a representative extract of numerical 
results as obtained from equation (14). This has been 
done in Table 1 where the variation of i,,. A, and q 

with C#I and ratio of heat-transfer coefficient can be 
followed numerically. For hzl/rI = 1 the results agree 
well with the analytic ones from Section 3: but it would 
certainly be convenient if all the other results could be 

correlated by some average heat-transfer coefficient for 
use in the analytic solution. This is attempted in the 
following section with the corresponding numerical 

results included in Table 1. 

5. AVERAGE HEAT-TRANSFER COEFFICIENT 

In the following we have to keep in mind our basic 

aim of correlating the numerical results such that 
effectively a closed-form solution to the general prob- 
lem is obtained. However, lacking an exact solution 
we have to compromise between simplicity and 
accuracy of the final relations, With the scheme of 
Section 4 a specific problem can be solved to any 

degree of accuracy but when one comes to, e.g. opti- 
mizing such periodic processes, a simple “analytic” 
form of the result is required which only needs to be 
of a sufficient relative accuracy. 

It was mentioned in Section 3 that neither the 
harmonic nor the exponential average of the heat- 
transfer coefhcient would suffice to project all the curves 
of Figs. 3 and 5 onto those of the symmetric problem 
4’, = R. In the present study these averages are defined 

as (XC [3]). 
2 

II,, = (15) 
_“. + _~__.1_ 
h2$ h1(2n-4) 

and 

Ii,, = 4k 

i 

1 
X 

exp(Bir)-1 I-exp(-B12), 

with 
171(2n-d) 

Bi, = -Xi-m &/w); Bi2 = &;&t/w). (17) 

For constant h equation (15) reduces to 

(18) 

i.e. a harmonic average of the relative phase times: 
alternatively one may obtain an exponential average 
from equation (16). It is easily verified that by either 
of the two formulae the variation of H and A., with 4 
becomes far too large. Only in the limit of Bi + 0, where 
equations ( 15) and (16) become identical, both averages 
hold exactly; this is evident from equation (I 1) which 
in combination with equation (18) gives 

HHI+, = 0.25 (for all C$ and II,, h,) 

Further, a variation in hZjh, is no more interchangeable 
with the corresponding change in C#J as was the case 

in [3]. This is expected from purely physical con 
siderations since time Q, and quality /I of heat transfct- 
have different effects on the temperature distribution 
in the solid. Therefore, we may as well tirst correlate 
the results with variable Ir and do a separate correlation 
of the parameter C/J thereafter. 

All the numerical results were processed on the basks 

of equations (15) and (16): it is pointed out that C/I 
merely acts as a time-weighting factor on /I and cannot 

be correlated adequately itself. Yet it is remarkable 
that variable ratios of heat-transfer coefficients can bc 
correlated with high accuracy. This may bc somewhat 

surprising since both equations (7) and (12) arc not 
linearly dependent on II. Over the covered range 01 
ratios and absolute values of II, and /r2 equation ( 16) 
holds within a maximum error of 2”,, whereas equation 

(15) leads to a maximum deviation of I?‘() from the 
analytic (c$ = n) or a smooth curve (0 2 n). For sim- 
plicity of the results we preferred to display the results 
from equation (15) (see Figs. 7 and 8) and may remark 
that trends of error, as seen for (/I = rt and (I, = 3n 2. 
are virtually eliminated by the use of equation (16). 

This is because the harmonic approximation becomes 
less meaningful for larger ratios and values of Bi, and 
Biz (see also [3]). 

The second part of the correlation refers to the phase 
angle of heating. By effectively applying equation ( IX) 
we have overemphasized the influence of C/I so that now 
the curves with 4 >< rr lie on the other side of the 
symmetric curve (i’, = 7~. Hence. it is sensible to try a 
correction factor such that 

-2 \ II 

In fact, it turns out that without any significant loss in 
accuracy II = 0.5 so that 

The quality of the final correlations is seen in Figs. 9 

and 10 where the solid curves represent the simplified 
equations (7) and (12). i.e. 

Thus, all the assymmetry of the problem is expressed 
in the parameters given by equations (15) and (19) and 
the evaluation of A, and H becomes remarkably simple. 

It is recalled that for the actual calculation of extreme 
temperatures we also need the arithmetic average of 
the extreme temperatures. For a constant heat-transfer 
coefficient this was given by equation (8) or Fig. 4 but 
for different heat-transfer coefficients during heating 
and cooling changes are expected. However, once an 
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FIG. 9. Final correlation of A,; the solid curve represents the analytic solution of the 
symmetric problem. 
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FIG. 10. Final correlation of If; the solid curve represents the analytic solution of the 
symmetric problem. 

approximation has been established by which the and 13iz as well as their ratio are the same before and 

assymmetric problem is reduced to a symmetric one after the operation. Thereby we obtain a new, constant 

then the same procedure should be applicable to both value for h and the Biot number is calculated from 

the difference and the sum of the extreme temperatures. equation (19) 
Hence, we can adopt the same method as in [3]: 
different heat-transfer coefficients hr and h2 are re- 
placed by a corresponding change in C$ such that Bil 

Bi* = %_J(;JJ(“‘:-“‘). (19a) 
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Here. (i, is the new artificial value of the phase angle 

and the correction factor arises from the fact that (71 is 
correlated by the square root of the harmonic average 
(see above). In equation (X), too. one has to emplo) 

the new value of (b which just compensates for the 
different heat-transfer coefficients. For illustration a 
few values from Table I are included in Fig. 4 and it 
is seen that the same degree of accuracy is achieved 

as in Figs. 9 and IO. 
This completes a simple and yet physically-based 

corrclatlon and WC believe that in view of the com- 
plcxity of the original problem a fairly accurate 

approximation has been developed. If higher accuracy 
M;IS ccer required either the concept of exponential 
a\cr:tfe could be used or a numerical solution to the 

specific problem obtained along the described method. 

The problem of periodic heat exchange between a 
fluid and a thermally thick solid body has been studied 
under conditions of practical interest. The step change 
in lluid temperature, though not exactly possible in a 

real process, often provides a first approximation 
which is safe x’ith respect to extreme temperatures and 
accurate as far as the storage capacity is concerned. 
However, the major goal was to account for different 
heat-transfer coefficients during heating and cooling 
without having to go through a numerical procedure 
for each individual problem. Therefore an analytic solu- 
tion for cqual heat-transfer coefficients was developed 
and a suitable avrragc devised from the numerical 
results to asymmetric problems. This aforegoing has 
the adlantapc of supplying a closed-form solution to 
the general problem with the ratios of heat-transfer 
coefficients and phase times being expressed in a single 
parameter. A particularly simple result is obtained by 

using the time-weighted harmonic average of the heat- 
transfer coeflicients and the square root ofthe harmonic 
average of the relative phase times of heating and 

cooling. In comparison with numerically determined 

\alucs of rxtreme temperatures and storage capacity 
the error may reach 5”,, in extremely asymmetric cases 

but would still bc sufliciently small for most purposes; 
by employing more elaborate schemes one can. how- 
e\ cr. imprnvc the accuracy. 
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APPENDIX 4 

According to the method of complex temperature [I?] 

we have to generate a new’ problem such that all the cos- 

terms of the old problem (see equation (2)) arc converted 
into sin-terms. This is achieved by the following shift: 

cos[ Zr;ri(;-“~~!~ 1 = (-I)“sin(2nm). (A.1) 

Hence the new problem is given by 

iO* ?211* 

1-r ; 1 
.z . (A.?) 

]] (A.3) 

and 

0*/y-, =o. 

Now the complex temperature is defined as 

* = 0+10* 

(A.4) 

(A.5) 
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whereby the complex problem becomes 

i;* l?$ 

sT_?YZ 

with boundary conditions 

Sin~n~‘2!exp((_I)“i2nnr) (A.7) 
II 

and 
$/YCa = 0. (A.8) 

In order to simplify the further procedure, we may discard 
the term (- I)“. This is feasible because we can solve any 
complex problem the real part of which represents the 
original problem. Thereby equation (A.7) becomes 

Being only interested in the periodic steady state we set 

CD,(y) T exp(i2nnr) (A.lO) 

Inserting this into equation (A.6) we obtain 

zl{ ‘?$!!3 [ $“]}=O (A.111 exp(i2Rn5) i2nnQ,, - _i 

which for all times 7 can have a non-trivial solution only if 

(A.12) 

with the solution 

T(J,s)= D,(s)exp[)iJ(s!a)]+Dz(s)exp[-!,G(.sir)]. (8.2) 

From boundary condition (3) it follows that 

and 

Dl(S) = 0 

T(y. s) = D(s)exp[ -J~:(.\ r)] 

The heat flux in the Laplace domain is defined as 

(8.3, 

hence 

D(s) = $0, s)& ‘s)‘k. (8.4, 

The final solution in terms of the heat flux on the surface 
becomes 

T(~,s) = $0,~) -L J(cc/s)exp[-~J(s~rr)]. (B.5) 

The inversion proceeds via the convolution integral: De- 
noting the transform with Y and the inverse with Y’- I 
the following relation holds: 

Y 
U 

[y(t-I))Y-‘[g(s.~)]) dl, 
0 1 

= y[[c](r,O)]. y’; V-‘[q(.j, y,]). (B.6, 

The RHS is identical to equation (B.5); with 

The solution to this ordinary differential equation is 

0,=B1,,exp[YJ(i2nn)]+Bz,,exp[-YJ(i2lm)]. (A.13) 

Equations (A.8) and (A.lO) yield 

BI,,, = 0 

so that 

and 

@. = B, exp [ - Y J(i27cn)] (A.14) 

d@n 
dY y=o 

= -B, J(i2m). (A.15) 

The B. have to be evaluated from the boundary condition 
(A.9) and after some complex algebra we find that 

B = J ,_/(nn)/Bi + 1 -i ,,/(an)/Bi 
n 

If 2 G(nn)/Bi + 2rrn/Bi2 > 
(A.16) 

n 

Insertingequation(A.16)into(A.l4)and the latter into(A.lO) 
yields 

1+ j(nn)/Bi-i,/(m)/Bi 

1+ 2 ,/(nn)/Bi + 2miBi’ 

x exp[-YJ(nn)].exp{i[2rmr-YJ(nn)]} (A.17) 
1 

It may easily be verified that the real part of equation (A.17) 
is identical to equation (5), i.e. 

@i ($) = O(t. Y). 

APPENDIX B 

The Laplace transform of equation (1) is 

0.1) 

Normalizing T(.v. s) on the constant initial temperature level 
T(J’, 0) yields 

esp[-j?(4al)] (B.7) 

the solid temperature becomes 

I 
q,T(t-~~)P exp[ -?;(4rlj)]dlJ. (8.8) 

V,‘!’ 

At the surface this simplifies to 

T(0, t) = T,(t) = :, JOS ” q,(t -I), --! dt>. (B.9, 
7l (I ,:tr 

Thereby boundary condition (2) becomes 

c&(t) = /IT,-hT, = hT,-; JOi r I 
q.J-U-T dli. (B.10) 

l-C 0 \, I, 

From this equation a forward-mardhing process is developed 
as follows : 
On dropping the index s and letting time run in discrete 
intervals of length At. i.e. 

t-nAt(O.1,2 ,... j . I .._. II,. 

we get 

Ur 

+ s ~~+&di~+...+ 
“A! 

(j-*W \/II s ,n-I,M 
<,j ;!,> dl,: (B.1 I, 

here the subscript n denotes the value of (I. II or T4 during 
the nth interval. The surface flux during the jth interval is 
approximated by 

which proved to be accurate enough for our purpose. As it is 
assumed to be independent of time equation (B.11) can be 
integrated so that 

4. = 

x ((q.+~~j+q,,-,)[ji-~!(i-l)]). (B.1’) 
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In explicit form this becomes evaluated, 

(!I- = Il,(T,, -7;) (B.151 

which has to be used in the mean value of yr+i. The pro- 
cedure may be clarified by writing the terms around the 
switching point: 

The starting values at the beginning of the heating period are 

q. = 11~ TqZ and /I, from equation (B.12). 

Some care has to be taken at the switching point ([At). 
Assuming a switching from q, to qI (and hZ to h,) one 
obtains the surface temperature at the end of the last “old” 
interval from 

7; = T,z-&Z. (B.14) 

Then, at time (not interval) IAt a new heat flux q,+ is 

+(c/,+qo)[,:‘(I+2)-.~(I+ I)]) (B.16) I 
Hence, depending on whether the considered interval is left 
or right of the switch-over point, we have to employ two 
different values for the heat flux. 

SUR LE COEFFICIENT DE TRANSFERT MOYEN DANS UN 
ECHANGE PERIODIQUE DE CHALEUR: SOLIDE SEMI-INFINI 

R&urn& -Prolongement de travaux anttrieurs, cette ttude dkcrit I’Cchange de chaleur ptriodique entre 
un gaz et un solide semi-infini. La phase gazeuse subit un changement discontinu de tempkrature, la 
valeur du saut &ant pris comme variable indtpendante. Une condition B la limite de troisikme esptce est 
imposie et on effectue une r&solution analytique du problkme dans le cas d’un coefficient de transfert de 
chaleur indbpendant du temps. 

Une situation plus proche de la rialittt. dans laquelle le coefficient de transfert varie avec la tempbrature 
du gaz, est alors rksolue par une mCthode de progression numb-rique pas a pas. Ces rt%ultats numtriques 
sont corrt_lCs sur la base d’un coefficient de transfert thermique moyen convenable employ& dans la 
solution analytique. Par suite, les rksultats peuvent aist‘ment &tre adapt& aux techniques nouvelles deslinkes 

B optimiser les processus d’Cchange ptriodique. 

UBER DEN MITTLEREN WARMEOBERGANGSKOEFFIZIENTEN BEI PERIODISCHEM 
WARMEAUSTAUSCH: HALB-UNENDLICHE SPEICHERMASSE 

Zusammenfassung-In Erweiterung einer friiheren Arbeit wird der periodische Warmeaustausch zwischen 
einem Gas und einer thermisch dicken Wand untersucht. Die Gastemperatur andert sich sprungartig. 
und das Verhiiltnis van Heiz- zu Kiihlzeit ist variabel. Unter einer Randbedingung dritter Art wird eine 
geschlossene Liisung entwickelt. wobei jedoch ein zeitlich konstanter WHrmeiibergangskoeffizient 
vorausgesezt werden muB. 

Der realistischere Fall, dal3 der W&-meiibergangskoeflizient van der Gastemperatur abhlngt, d.h. 
zeitlich verlnderlich ist, wird mit einem Schrittvkrfahren gel&t. Die Korrelation der numerischen 
Ergebnisse erfolgt iiber einen geeeigneten Mittelwert des WBrmeiibergangskoeffizienten, der in die 
analytische Liisung eingesetzt werden kann. Damit erhglt man eine geschlossene Form der Liisung, die 

sich leicht in Optimierungsverfahren fiir periodische Austauschprozesse weiterverarbeiten IaBt. 

0 CPEAHEM K03@@WqHEHTE TEI-IJIOOEMEHA I-IPH I-IEPHOAHYECKOM 
I13MEHEHkfM TEMI-IEPATYPbI: nOJIYOI-PAHHYEHHOE TBEPAOE TEJ-IO 

AmioTamn - B AaHHOfi pa6oTe, SIBJlSIloIWZiCSi IlpO~OJIXeHHeM npeAbIAyIUHX HCCJI‘XOBaHBti, OnUCbI- 

BaeTC~TenAOO6MeHMe~Ayra3OMUnO~yOrpaHUYeHHbIMTB~~AbIMTe~OMnpUnep~OAUYeCKOM~3Me- 

Hemin TehmepaTypbI. ra30Bax @asa npeTepneBaeTcTyneHYaToe H3MeHeme TehmepaTypbI,a AnnHa 
Luara flBnReTcn nepeh4eHHoP semiYliHo% PaccaMTpesaeTcn rpamvmoe ycnoeae TpeTbero p0A.a H 
nonyyeHoaHanaTs~ecKoepemeH5ie 3aAaYn nnscnyyan, KorAaK03~&i4~eHTTennOO6MeHaHe3aBxaT 

OT BpeMeHH. 

Eonee peanbH& cnyyak, Korna Ko@&iu5ieHT Tennoo6Meaa U3MeHReTcX c TeMnepaTypofi rasa, 
pelllaeTC~MeTOAOMn~IlMO~npO~OHK~.~TBYWC~eHHblepe3y~bTaTbIo6o6~aIoTc~CyY&TOMCOOTBeT- 

cTBymqer0 cpeAHer0 K03+$mmeHTa TenJIOO6MeHa ,ztnn nonyyeeea aHanaTtiYecKor0 pememn. 

TaKRM o6pasoM, nOJlyYeHHble pe3yJIbTaTbI MOl-yT 6blTb HClIOJIb30BaHbI B AaJIbHekIIlHX pa&Tax B 

uensIx onTnMu3auuU npoueccor3 Tennoo6Mena. 


