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Abstract—In extension of a previous study this work describes periodic heat exchange between a gas
and a semi-infinite solid body. The gas phase undergoes a stepwise change in temperature with the step
length as a free variable. A boundary condition of the third kind is considered and for a time-independent
heat-transfer coefficient an analytic solution to the problem is developed.

A more realistic situation, where the transfer coefficient changes with gas temperature, is solved by a
forward-marching process. These numerical results are correlated on the basis of a suitable average heat-
transfer coefficient to be employed in the analytic solution. Thereby the results become easily adaptable

to further techniques aimed at optimizing periodic exchange processes.

To H. Hausen in recognition of his pioneering work

NOMENCLATURE

h, fluid-solid heat-transfer coefficient
[Wm™2K™1];

k, thermal conductivity of solid [Wm 'K ~'];

q, heat-flux density [Wm~2];

f, time [s];

T, temperature [K], referring to solid if without
subscript;

U, overall heat-transfer coefficient
[Wm™2K™'];

¥, coordinate from solid surface to interior
[m];

o, thermal diffusivity of solid [m?s™'];

o, phase angle of heating [rad];

o,  oscillation frequency [s7'].

Dimensionless quantities

Bi, = h /{e/w)/k Biot number;
2
Bi*, Bi \/(¢(27T—¢)> corrected Biot number;
q

H, T —Tor) heat-flux parameter;

j.n,  integer;

Y, = y/\/(2/w) depth coordinate;

As, difference between extreme solid
temperatures according to equation (7);

0, solid temperature;

0, arithmetic average of extreme solid
temperatures according to equation (8);

1, time coordinate.

Subscripts

e, exponential;

g, fluid;

h, harmonic;

1, during cooling;

2, during heating.
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1. INTRODUCTION

PERIODIC heat exchange between a fluid and a solid
phase has been studied extensively in connection with
the design and performance of thermal regenerators.
However, the analytic treatment still suffers from the
fact that the general problem is three-dimensional, i.e.
the solid temperature varies with time, depth from the
solid surface and in the direction of gas flow. Usually,
either the second [1] or both second and third variable
[2] are subjected to some approximation procedure
before the final solution is obtained. A brief summary
of the state-of-the-art has been given recently [3]. In
view of this background the present study neglects the
third variable completely which would apply to an
infinitely short regenerator or to a gas flow of infinite
thermal capacity.

On the other hand there are many processes where
a solid body is merely heated and cooled periodically
over its entire exchange surface. The outside wall of
a building, the brick lining of a rotary kiln or the work
roll of a hot strip mill are just a few examples where
one is interested in either the storage capacity or the
extreme solid temperatures or both. On the basis of a
thermal analysis the important parameters can be
varied towards an optimum design of the element or
apparatus. The inside wall temperature and heat-flux
distribution determines the heating policy in a building
[4]. the periodic heat flux from the charge to the lining
and from the lining to the gas affects the length of the
kiln required for a certain duty [5, 6] and the maximum
surface temperature of the work roll decides on the
amount of additional cooling [7].

The theoretical study of such problems can be done
under various assumptions about the nature of the
boundary condition or the solid body itself. With a
boundary condition of the first kind, i.e. known
periodic solid-surface temperature and for a semi-
infinite solid body the solution is well-established [8]:
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Fi. 1. Mlustration of the general problem.

the same applies to a boundary condition of the second
kind or known periodic flux at the surface [9,10].
However, often it is certainly more realistic to consider
a boundary condition of the third kind which means
specifying the periodic fluid temperature together with
the heat-transfer coefficient and solving for the solid
temperature. This problem was analyzed for a sinu-
soidal fluid temperature distribution, constant heat-
transfer coefficient and solid body of any thermal
thickness [11]. Unfortunately, in many technical situ-
ations the fluid temperature is not sinusoidal and, to
complicate things even more the heat-transfer coef-
ficients during heating and cooling differ markedly
from each other. The latter may be due to either
different temperature levels only or to the presence of
two different fluid phases as is the case for the rotary
kiln. A straightforward numerical study of each specific
problem could in principle yield the required results,
but we believe that a stepwise change in fluid tem-
perature and heat-transfer coefficient together with a
variable step length of heating is sufficiently realistic
to justify a general treatment similar to that of Groeber
[11].

In a previous article [3] we have considered the
solid body without thermal resistance and subjected
it to the above boundary condition. Following a similar
approach we now solve the problem for the semi-
infinite solid: a general analytic solution for a constant
heat-transfer coefficient and a variable phase angle of
heating is developed first; then follows a second, in this
case numerical approach in which the heat-transfer
coefficient varies simultaneously with the fluid tem-
perature. The comparison of both results leads to an
average heat-transfer coefficient for use in the general
analysis. The advantage of this aforegoing over other
possible ones is that we eventually obtain a closed-
form solution of physically correct structure although
the problem, to our knowledge, cannot yet be solved
analytically.

It is noted that we prefer not to present the general
problem of the finite solid body of finite thermal con-
ductivity; the mathematical approach is much the same
but the equations become prohibitively voluminous
without providing significantly more physical insight.
The really valuable information in that case is the
temperature oscillation in the symmetry axis of the

body; its relative magnitude decides on the applicability
of this or the previous [3] analysis. However, once the
general approach is established the main results of the
general problem will be presented in a brief follow up.

2. FORMULATION OF THE PROBLEM

It is assumed that the semi-infinite wall is homo-
geneous and that its physical properties are indepen-
dent of temperature. Then the extreme temperatures
and storage capacity are evaluated from the solution
to the following Fourier equation (see Fig. | and the
Nomenclature):

oT 0T
PO A i (n
1 Cy*
The boundary condition on the exchange surface y = 0
reads

O 1y
K2 = T -T,), (2)
y

where both the gradient and the value of T, are un-
known. The second boundary condition simply states
that at y = s the temperature oscillation has dis-
appeared, i.e.

T|y=., = constant. (3)

As in any periodic problem, where one is not interested
in the transient behaviour, the initial condition is
expressed in the time-dependent boundary condition
(2). Tt is pointed out that this equation becomes non-
linear when the heat-transfer coefficient varies with
time. For this reason the analytic treatment is limited
to a constant transfer coefficient.

The fluid temperature 7, is expressed in terms of a
Fourier series, hence

T() = Ty +(Tpo — Tyy)
i + - Y {51@(/)}) Cos(2rm(ut)}
=1 ]

>< _
2n n

)

This is inserted in equation (2) whereby

=T, ¢

0= —-
7;2*7:” 2n

emerges as an obvious dimensionless temperature. The
inclusion of the integrated average of the fluid tem-
perature is feasible as long as the heat-transfer coef-
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ficient is the same during heating and cooling; then
the integrated average of the solid temperature is the
same.

The reference length is chosen in analogy to the
“penetration thickness” commonly employed in tran-
sient problems; it is in fact an inverse Fourier number
modified for the periodic case. With

Y= y/\/(a/u)) and t=1tw

the transformed problem becomes

0 0 L
ér oYY
20 2 = (si
i—s = Bi[(?s -y {M cos(2rcnr)}} (2a)
cY .2 n

and
9|Y=ao =0.

Here we have introduced the Biot number

(3a)

to account for varying physical properties of the solid
as well as frequency of the temperature oscillation.
Again, it is seen that this is a true parameter only if
the heat-transfer coeflicient stays constant or if at least
a time-independent average can be used. Equation (3a)
demonstrates the importance of Y rather than y for
the analysis to be applicable; the solid does not have
to be infinitely thick in a geometric sense.

3. ANALYTIC SOLUTION FOR CONSTANT

HEAT-TRANSFER COEFFICIENT
The solution of equation (1a) subject to the boundary
conditions (2a) and (3a) can be obtained in different
ways. Being interested only in the periodic steady
state we prefer to employ the straightforward method
of complex temperature as outlined elsewhere [12].
The development is given in Appendix A and as a

final result the solid temperature becomes

20X {sin(n¢/2)

fir,Y)y==3%

Tp=1

x exp[ — Y\/(nn)] {Cycos[2nnt— Y /(nn)]

+Cysin[2mnt = Y /(nn)] )} (5)

n

where
C. = 1+ \/(TL'n)/Bl.
' 1 +2/(nn)/Bi+2nn/Bi?
and
VB
c, \/(mn)/Bi

" 142 /(xn)/Bi+2mn/Bi*’
The combination of the two trigonometric functions
to one with argument

. -1 l
{znm— Y Jlon) — tan [Tmﬁ]}

would be misleading because it was shown previously
[3] that with a stepwise change in fluid temperature

there is no time lag between fluid and solid—surface
temperature.

The further processing of equation (5) depends on
the considered applications. In general, one would be
interested in the extreme solid temperatures, to be
found on the surface, as well as in the amount of
energy stored and released per cycle or per unit time.

Extreme temperatures

In the symmetric problem [11] the difference
between maximum and minimum surface temperature
is sufficient to find the extreme values whereas here the
arithmetic mean or some other reference value is re-
quired in addition. For two combinations of phase
angle of heating and Biot number the same difference
between maximum and minimum surface temperature
may result but the absolute values could be quite
different.

The surface temperature is given by
0.(0) _2 5 {sm(n(j)/Z)

Tp=1 n

x [Cycos(2ant) + C; sin(Znnr)]} . (®

From the above remarks and Fig. 1 we conclude further
that

Os.max - Os.min = 05 | (@f4row) — 05 |(4n —b/dnw) = AS
and

7';,ma)( - R.min

A=
To2— Ty

4 i { sin*(ng,2) .
_(\/n)BiFl (\/n)[l+2\/(7rn)/Bi+27rn/Bi2]} o

It is seen that, although equation (7) is of a particularly
simple structure, the convergence of the series is poor
especially when the Biot number is large. The reason
for this becomes obvious when one considers the
surface-temperature profile according to equation (6);
for illustration two different cases are plotted in Fig. 2.
At the switching point the heat flux must be dis-
continuous because it changes sign. There results a
kink in the surface temperature which is difficult—
though not impossible—to represent by a Fourier
series. The latter tends to round off the corner and
with larger Biot number an increasing number of terms
has to be considered in the series. Equation (7) is
represented in Fig. 3 showing the effect of variable
phase angle of heating on the surface-temperature
oscillation. The series was taken up to 3000 terms for
Bi < 2 and up to 8000 terms for larger Biot numbers.
It may be pointed out that a straightforward evalu-
ation of the Fourier series breaks down at such large
arguments of the trigonometric series; instead, some
recurrence relations [13] had to be used so that an
efficient solution could be generated without any loss
in computation accuracy. Still, the comparison with
numerical results, to be discussed later, shows a dis-
crepancy of up to 4% which is equivalent to a —29%
error in the maximum temperature. On the other hand,
such an error only occurs at large Biot numbers where
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FiG. 3. Difference between maximum and minimum solid temperature at uniform
heat-transfer coefficient and with relative heating time as parameter.

the maximum solid temperature is close to the fluid
temperature and a slight under-estimation is seldom
critical.

When comparing Fig. 3 with the corresponding
results for the thermally thin solid [3] one has to bear
in mind the different definitions of the Biot number. In
spite of the same physical meaning of both parameters
a numerical comparison is inadmissible because they

do not employ the same variables. However, a quali-
tative comparison as to the influence of the phase angle
of heating demonstrates a major difference between the
two systems. Here, the change in amplitude with
decreasing ¢ is much smaller than in [3] which is
explained as follows: having a certain resistance to
absorb energy the solid needs some time to do so;
during this time a solid layer next to the surface will
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settle very quickly at a temperature such that the flux
of energy arriving from the fluid can be accommodated
in the interior. Hence a decrease in ¢ would only cut
off the tail of the temperature~time curve where changes
are small. This is not so with a slab of infinite thermal
conductivity. There the temperature changes exponen-
tially which means that differential changes are signifi-
cant over the entire heating period as long as A, is not
close to one. Consequently, a decrease in ¢ has a more
direct effect on the final temperature.

On the other hand, we conclude from this difference
in behaviour that neither an exponential nor a har-
monic average of the heat-transfer coefficient is suitable
to simplify the analytic result, We recall from [3] that
with the exponential average of h, inserted in the Biot
number, all the curves for ¢ < = were projected onto
the curve for ¢ = n. It is verified easily that, in the
present case, errors of 40% or more could result from
using either of the two averages. This may demonstrate
that the commonly considered concept of a harmonic
average is not feasible.

In order to evaluate extreme temperatures it is con-
venient to use the arithmetic mean of maximum and
minimum temperature together with equation (7).
From equation (6) we find that

2 9l ® sinm
—-"—*—————:%‘f‘ c, 00 g

n=1 hn
Here the errors at the times of switch-over are sub-
tracted which is the reason for the improved conver-
gence of the series. Equation (8) is easily evaluated and
as the results are symmetric to §; = 0.5 only the lower
half is shown in Fig. 4. It is obvious that e.g.

0(¢ = 3m) =1-0(¢ = n/2).

For large Biot numbers

T2 —Tp

0,505 since A,—1,

whereas in the limit of

Bi—0

then g~ i
2n
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the integrated average of the fluid temperature. The
latter result is evident because the integrated averages
of fluid and solid temperature must be the same as long
as h is constant. With decreasing fluctuation, on the
other hand, arithmetic and integrated average approach
each other.

Storage capacity
The energy released per unit time is given by

{(4r~¢/4nw) 5T
g = —ko j —_—
{$/4nw) ay

In terms of the dimensionless quantities introduced
earlier this becomes

q 1 J'(An'rh/mr) o0
WT—T) B oy

The heat-flux parameter H, which was already intro-
duced previously [3], can be interpreted as a correction
factor to the heat-transfer coefficient. H reaches a
maximum value at infinite rotational frequency w
because then the process becomes equivalent to the
indirect heat-exchange process with fluids at 7, and
T,1 and heat-transfer coefficients k (see [14]). In that
case

dr. ]

y=0

H= dr. (9a)

Y=0

(®/4n)

q=hTp—T) = HT,—Ty) (10)
or
q=U(Tp2~Ty)
with
U= 1 — 65(275——95).
2n N 2 47
h¢  hQ2n—o)
Therefore
$2n—¢)
Hpio = 27
Bi0 i (11

which is largest in the symmetric case, i.e.
Hpioo(¢ = m) = Hpye = 0.25.
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FIG. 4. Arithmetic average of maximum and minimum solid temperature; the curves
are symmetric to 0 = 0.5.
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Smaller or larger values of ¢ result in a reduced value
of H which agrees with the concept of the harmonic
average. When Bi > 0 then H must decrease further
because the two processes given by equation (10) do
not occur simultaneously any more.

From the definition of the Biot number we also
find that

Bi—»0 for k—x:

hence in the limit this analysis should yield the same
result as the previous one [3]. In fact, it was shown
there that the same equation (11) holds for the solid
of negligible thermal resistance.

J. KERN

based on a modified heat-transfer coeflicient (see [15])
is preferential in the symmetric problem but turns out
to be less convenient in the more general problem
treated here.

4. NUMERICAL SOLUTION OF THE GENERAL PROBLEM

As pointed out before the strict analytic treatment
of the problem is limited to a linear boundary condition
(2a). Tt seems that with a time-dependent heat-transfer
coefficient either an approximate analytic or a numeri-
cal method has to be employed. The majority of the
former have, however. only been developed for tran-
sient problems with a well-defined initial condition
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FiG. 5. Dimensionless storage capacity of solid body at uniform heat-transfer
coefficient.

The evaluation of the integral in equation (9a) is
lengthy but elementary and may be omitted. The final
result is
Heo 2 ¥ {w’n)[l +2y/(eny/Bi] sin*(19,2) } 12

n(ymBi, = | n*[1+42/(rn)/Bi+ 2nn/Bi?]

and is illustrated in Fig. 5. It is seen that with all other
variables staying constant an infinite rotational fre-
quency yields a maximum storage capacity. This result
has some impact on the design of rotary heat-exchange
equipment because it will lead the way towards estab-
lishing optimum operating conditions for such pro-
cesses.

An unfortunate feature of the chosen set of par-
ameters is that & appears in both the Biot number and
the heat-flux parameter. From Fig. 5 one may conclude
that with increasing h and hence Bi the storage capacity
would drop whereas, in fact, the opposite is found by
evaluating g at two different Biot numbers. However,
it was preferred to operate with established and directly

applicable parameters rather than introduce new ones.
The alternative concept of defining a Nusselt number

b .

[16,17]. This is also the case with the heat-balance-
integral method [18] which is essentially a sophisti-
cation of the Ritz—Galerkin scheme [19]; although it
should be possible to modify this method for use in
the periodic problem a reasonable accuracy would lead
to rather complicated approximation functions. An-
other approach discussed recently [20] and directly
applicable to periodic problems again requires that the
boundary condition be linear in time.

A disadvantage of the straightforward numerical
methods is that the entire transient behaviour has to
be evaluated in time and space; the periodic steady
state is reached when no significant changes in solid
temperature are experienced from one cycle to the next.
Although the initial condition, i.e. the temperature level
at zero time can in principle be arbitrary it still has a
major effect on the required computation time. If this
level is unknown then both the explicit (finite-differ-
ence) and the implicit (Crank—Nicolson) methods may
become prohibitively time-consuming. Even with sym-
metric problems such a direct approach is often ex-
tremely expensive [21]. Jaeger [22] suggested a method
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based on the superposition of incremental analytic
solutions. For a linear boundary condition only a set
of algebraic equations needs to be solved in order to
yield an overall analytic solution, but for the non-linear
boundary condition an iterative numerical technique
has to be applied which, adapted to our problem,
becomes rather involved.

Finally, a procedure suggested by Bentwich [23] may
be discussed briefly; it is essentially a Fourier-series
approach to the complete problem. By developing the
heat-transfer coefficient h as well as the fluid and solid-
surface temperatures into Fourier series and breaking
off the series for h after n terms onc obtains from
boundary condition (2a) a set of » algebraic equations.
From these the coefficients of the surface-temperature
series are determined. By this aforegoing the transient
stage is eliminated; in addition, the truncated series for
(hT,) may, for many applications, be more realistic
because a mathematic step is unlikely to occur in a
real process. The only restriction is that n would be
limited to values < 10 in order to keep the calculation
effort within reasonable limits. However, a direct com~
parison with the analytic results of Section 3 then
becomes difficult because this approach may lead to
substantially reduced values of A;. Even with a constant
value of n the relative accuracy will not be the same
for all values of ¢ and Bi so that the specification of
a suitable average of h to be used in cquation (7)
becomes unreliable. Therefore, in spite of its merits, this
procedure was not adopted for the present study.

Instead, a modified numerical technique, outlined in
Appendix B, is used. Having started with an elaborate
finite-difference scheme we realized that the correct
initial temperature level in the slab is absolutely essen-
tial for convergence to periodic steady state within a
reasonable time. The reason for this is quite simple:
once the wrong level has been chosen only the difference
between absorbed and released energy is available for
adjustment within one cycle. However, the solid is per
assumption of infinite “thermal” thickness so that a
large number of cycles is needed to achieve a significant
rise or drop in the temperature level (theoretically an
infinite number of cycles is necessary). As small time
and space intervals have to be chosen for reasons of
accuracy and stability also an iterative procedure on
the basis of, e.g. ten cycles had to be abandoned,
particularly in view of the required amount of results
(see Fig. 7). In conclusion, it was found that the straight-
forward numerical approach is only suitable as long as
the heat-transfer coefficient is constant; then the initial
temperature level is set to the integrated average of the
fluid temperature (see the discussion in Section 2). With
a variable heat-transfer coefficient we do not know the
temperature at Y — oc so that this method will not be
successful.

The scheme which was eventually adopted is basi-
cally similar to the one discussed recently in connection
with the transient problem of the quenching of a solid
sphere [24]. It evaluates the first few cycles very
rapidly so that a wrong initial temperature level can
be adjusted before substantial time is wasted. The

problem, given by equations (1)}-(3), is Laplace-trans-
formed with respect to time (see Appendix B) and

sonlved in terms of the uinknown surface heat-flux. The
SCIVEQ 1 18rms O1 the UnKnown suriacl neat-niux, 1nc

inversion via the convolution integral yields a non-
linear Volterra integral equation of the form

o t
Tty = \/(‘W"> J‘ gt —N)wdv
nk? NE

This is inserted n the boundary condition (2). A
forward-marching process is then developed by split-
ting the integral into suitable time intervals At and
assuming that within such an interval the flux ¢, or
its mean value is independent of time. Thereby the
integral can be solved and the final relation for evalu-
ating the surface flux at time (nAr) becomes

By |[alt) &
==y J<7> 2;1
X ‘{(QS‘n+lfjH(Is.n’j)[\/,j—\/(j_1)]}' (14)

Once the flux is known one determines the surface
temperature at (rAr) from the original boundary con-
dition (2). The important sections of two different
profiles 6,(r) at ¢ = n/6 are plotted in Fig, 6; in one
case the heat transfer coefficient is constant whereas
in the other the transfer coefficient during heating is

ten times as large as during cooling. The latter case
would represent approximately the situation in the
brick lining of a rotary kiln.

The advantage of this scheme is that the space
coordinate has been eliminated whereby the necessary
calculation effort is reduced substantially. On the other
hand, the nature of the convolution integral implies that
the flux at each point in time be calculated from all
the previous values down to the start. We effectively
calculate the transient behaviour and periodicity is
introduced only by changing the values of h and T,
at multiples of the cycle time. In addition, the complete
series in equation (14) must be evaluated for each
increase in # because at each time the previous values
of g, are multiplied by different weighting factors.
Therefore, the calculation time blows up dramatically
for a large absolute time, i.e. number of cycles. Still,
we found that once the correct starting level of tem-
perature has been established—this can be done by
including certain heuristic steps in the computer
program—the periodic steady state, within limits of
accuracy, is reached after a maximum of ten cycles.

Each cycle was split into 60 and under extreme con-
ditions into 120 time intervals; the latter was necessary
for large changes in temperature over a small period
of time. Then the average flux ¢,,. as defined in
Appendix B is becoming increasingly inaccurate (see
Fig. 6, top curve). The phase angle of heating was varied
such that

(13)

? 1113
Pl v 28 2 35281
2n

and within each value of ¢ the ratio of heai-transfer
coefficients was chosen as

hy/hy =152:3;4:5,10.
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s

Together with a constant value of

and heat-transfer coeflicients

F16. 6. Numerically evaluated temperature profiles on the solid surface; the
numbers refer to those in Table 1.
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FiG. 7. Correlation of the numerical results for A, on the basis of a time-weighted
harmonic average of the heat-transfer coefficient.

the covered range of Biot numbers becomes the same
as in Figs. 3--5. It may be pointed out that ratios of
hy/hy < 1 are covered as well due to the symmetry of
the problem, e.g.

Ag, H(hz/ly =025 ¢/2n = 0.25)
= A, H(hy/hy = 5:¢2n = 0.75).

V(/wl/k = 0.0765

10< hy <40
10 < h, <400
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FiG. 8 Correlation of the numerical results for H on the basis of a time-weighted
harmonic average of the heat-transfer coefficient.

20

30

40

‘“—'—““th

80

Table 1. Extract of numerical results for variable hy, h; and ¢

20

No| o hy M CA 4 H.h Bi BH‘ Hh Bih*

101 %/6 20 20 0.210 0.3534 1.194 ] 1.530 0.469 0.195 0.848
n 40 0.315 0.5255 1.844 - 0.863 0.164 1.561
12 60 0.375 0.6212 2.238 - 1.201  0.143  2.1713
13 80 0.410 0.6809 2.489 - 1.470 0,130 2.659
14 100 0.435 0.7183 2.661 - 1.750 0117 3.173
15 200 0.491 0.8056 3.096 - 2,673  0.089 4.836
20{7/3 20 20 0.288 0.4377 2.028 ] 1.530 0.850 0.183 1.140
21 40 0.396 0.5956 2.875 - 1.457  0.151  1.955
22 60 0.448 0.6706 3.310 - 1.813  0.132  2.567
23 80 0.479 0.,7119 3.581 - 2.267  0.121  3.081
24 100 0.498 0.7381 3.758 - 2.550  0.113  3.421
25 200 0.539  0.7897 4.154 - 3.400 0.098 4.562
30)w/2 20 20 0.349 0.4853 2.636 | 1.530 1.148 0.176 1.325
31 A0 0.452  0.6221 3.514 - 1.83 0.146  2.120
32 60 0.500 0.6793 3.935 - 2.295 0,131  2.650
33 80 0.525  0.7091 4.177 - 2,623 0.122  3.028
34 100 0.540 0.7278 4.330 - 2.86% 0.116  3.313
35 200 0.572 0.7634 4.661 - 3.531  0.101  4.077
46| = 20 20 0.500 0.5338 3.373 | 1.530 3.530 0.169 1.530
41 40 0.580 0.6086 3.988 - 2.040 0.150 2.040
42 60 0.610 0.6333 4.230 - 2.285 0.141  2.29%
43 80 0.624 0.6452 4.360 - 2.448 0.136 2.448
44 100 0.635 0.6486 4.418 - 2.550 0.133  2.550
45 200 0.650 0.6608 4.582 - z2.782 0.126  2.782
50{3v/2 20 20 0.651 0.4853 2.636 | 1.530 1.148 0.176 1.325
51 40 0.700  0.5111 2.837 - 1.311 0,166 1.514
52 60 0.715 0.5171  2.902 - 1.377  0.161  1.590
53 80 0.722 0.5193 2.934 - 1.412 0.15%8  1.631
54 100 0.726 0.5205 2.950 - 1.434  0.157 1.656
§5 200 0.733  0.5212 2.984 - 1.481  0.158 1.710

887
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The results are all displayed in Figs. 7 and 8. to be
discussed later. However, there they are already hidden
in a specifically processed form so that it may be useful
to present at least a representative extract of numerical
results as obtained from equation (14). This has been
done in Table 1 where the variation of (I, A, and ¢
with ¢ and ratio of heat-transfer coeflicient can be
followed numerically. For hy/hy =1 the results agree
well with the analytic ones from Section 3; but it would
certainly be convenient if all the other results could be
correlated by some average heat-transfer coeflicient for
use in the analytic solution. This is attempted in the
following section with the corresponding numerical
results included in Table 1.

5. AVERAGE HEAT-TRANSFER COEFFICIENT

In the following we have to keep in mind our basic
aim of correlating the numerical results such that
effectively a closed-form solution to the general prob-
lem is obtained. However, lacking an exact solution
we have to compromise between simplicity and
accuracy of the final relations. With the scheme of
Section 4 a specific problem can be solved to any
degree of accuracy but when one comes to, e.g. opti-
mizing such periodic processes, a simple “analytic”
form of the result is required which only needs to be
of a sufficient relative accuracy.

It was mentioned in Section 3 that neither the
harmonic nor the exponential average of the heat-
transfer coefhicient would suffice to project all the curves
of Figs. 3 and 5 onto those of the symmetric problem
¢ = 7. In the present study these averages are defined
as (see [3]).

2
hy = ——— (15)
B
ha¢  hiQu—d)
and
h, = 4k\/( U)tanh t
X
1
16
x : 1 (16)
—_— + —
exp(Bi;)— l—exp(—Bh)/
with
@2~ I
Bi; = 2%}\_@ \/(oc/u)); Bi, = %\/(a/w), (17)
For constant h equation (15) reduces to
2
hy=nh (]54(7{)45) {18)
n?

i.e. a harmonic average of the relative phase times;
alternatively one may obtain an exponential average
from equation (16). It is easily verified that by either
of the two formulae the variation of H and A; with ¢
becomes far too large. Only in the limit of Bi — 0, where
equations (15) and (16) become identical, both averages
hold exactly; this is evident from equation (11) which
in combination with equation (18) gives

Hpg;~o = 0.25 (for all ¢ and hy, h;).

Further, a variation in h,/h; is no more interchangeable
with the corresponding change in ¢ as was the case

in [3]. This is expected from purely physical con-
siderations since time ¢ and quality /1 of heat transfer
have different effects on the temperature distribution
in the solid. Therefore, we may as well first correlate
the results with variable /1 and do a separate correfation
of the parameter ¢ thereafter.

All the numerical results were processed on the basis
of equations (15) and (16): it is pointed out that ¢
merely acts as a time-weighting factor on h and cannot
be correlated adequately itself. Yet it is remarkable
that variable ratios of heat-transfer coeflicients can be
correlated with high accuracy. This may be somewhat
surprising since both equations (7) and (12} ar¢ not
linearly dependent on h. Over the covered range of
ratios and absolute values of /i, and h, equation (16}
holds within a maximum error of 2%, whereas cquation
(15) leads to a maximum deviation of 5%, from the
analytic (¢ = m) or a smooth curve (¢ 2 n). For sim-
plicity of the results we preferred to display the results
from equation (15) {see Figs. 7 and 8) and may remark
that trends of error, as seen for ¢ = 7 and ¢ = 3n2.
are virtually eliminated by the use of equation (16).
This is because the harmonic approximation becomes
less meaningful for larger ratios and values of Bi, and
Bi, (sec also [3]).

The second part of the correlation refers to the phase
angle of heating. By effectively applying equation (18)
we have overemphasized the influence of ¢ so that now
the curves with ¢ < 7 lie on the other side of the
symmetric curve ¢ = n. Hence. it is sensible to try a
correction factor such that

! 2 NA
Bif = Bih( i )
h — N .
P2n—¢))
In fact, it turns out that without any significant loss in
accuracy n = 0.5 so that

g |2 T
k o (j) (/))

The quality of the final correlations is seen in Figs. 9
and 10 where the solid curves represent the simplified
equations (7) and (12), i.e.

{19)

A = Ts.max - T;‘min 4 ‘
. T,,— Ty Bi}f\"‘"nnzl,lﬁ..,
1
X R 20
{ D[ +2 /(nn)/Bif + 2mn/(B 2]} 20
and
q 2 “

)
T Blfnﬁl.lﬁu.

hh(ng - i:)
1 +2./(nn)/Bij

— . (21
X{n“[l+2\ ',T)Z]} h

/(mn)/Bi + 2nn/(Bi

Thus, all the assymmetry of the problem is expressed
in the parameters given by equations (15) and (19) and
the evaluation of A, and H becomes remarkably simple.

Itis recalled that for the actual calculation of extreme
temperatures we also need the arithmetic average of
the extreme temperatures. For a constant heat-transfer
coefficient this was given by equation (8) or Fig. 4 but
for different heat-transfer coefficients during heating
and cooling changes are expected. However, once an



Average transfer coefficient in periodic heat exchange—II

889

09
o8

0~7r—

o-5k )

04}

4s

o2}

0-1[—

I A {

{
4.0

A 1
5-0 40 70 80 90 100

-——-Bih'

F1G. 9. Final correlation of A;; the solid curve represents the analytic solution of the
symmetric problem.

0-25

020

015

010

0-05%

Il L 1 L

I

20 30 40

— Bip*

n
50 &0 70 80 100

F1G. 10. Final correlation of H; the solid curve represents the analytic solution of the
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approximation has been established by which the
assymmetric problem is reduced to a symmetric one
then the same procedure should be applicable to both
the difference and the sum of the extreme temperatures.
Hence, we can adopt the same method as in [3]:
different heat-transfer coefficients h; and h, are re-
placed by a corresponding change in ¢ such that Bi;

and Bi, as well as their ratio are the same before and
after the operation. Thereby we obtain a new, constant
value for h and the Biot number is calculated from

equation (19),
Rrew <a> <d>(2n—¢>)‘

Bi* = (19a)
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Here. ¢ is the new artificial value of the phase angle
and the correction factor arises from the fact that ¢ is
correlated by the square root of the harmonic average
(sce above). In equation (8), too. one has to employ
the new value of ¢ which just compensates for the
differcnt heat-transfer coefficients. For illustration a
few values from Table I are included in Fig. 4 and it
is seen that the same degree of accuracy is achieved
as in Figs. 9 and 10.

This completes a simple and yet physically-based
correlation and we believe that in view of the com-
plexity of the original problem a fairly accurate
approximation has been developed. If higher accuracy
was cver rcquired either the concept of cxponential
average could be used or a numerical solution to the
specitic problem obtained along the described method.

6. CONCLUSIONS

The problem of periodic heat exchange between a
fluid and a thermally thick solid body has been studied
under conditions of practical interest. The step change
in fluid temperature, though not exactly possible in a
real process, often provides a first approximation
which is safe with respect to extreme temperatures and
accurate as far as the storage capacity is concerned.
However, the major goal was to account for different
heat-transfer coeflicients during heating and cooling
without having to go through a numerical procedure
for each individual problem. Therefore an analytic solu-
tion for cqual heat-transfer coefficients was developed
and a suitable average devised from the numerical
results to asymmetric problems. This aforegoing has
the advantage of supplying a closed-form solutton to
the general problem with the ratios of heat-transfer
cocfficients and phasc times being expressed in a single
parameter. A particularly simple result is obtained by
using the time-weighted harmonic average of the heat-
transfer coeflicients and the square root of the harmonic
average of the relative phase times of heating and
cooling. In comparison with numerically determined
values of extreme temperatures and storage capacity
the error may reach 539, in extremely asymmetric cases
but would still be sufficiently small for most purposes;
by employing more elaborate schemes one can. how-
ever, improve the accuracy.
Acknowledgement - The author is grateful to M. Bentwich
who suggested the numerical scheme eventually adopted.
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APPENDIX A
According to the method of complex temperature [12]
we have to generate a new problem such that all the cos-
terms of the old problem (see equation (2)) are converted
into sin-terms. This is achieved by the following shift:

20413 .
cos| 2anl v — - —) = (—1)*sin(2mnT). (A1)
\ 4n
Hence the new problem is given by
cox o orgr
= . (A.2)
T cY-
il 2 sin{ng;2) )
=~ = Bi| 0¥ — - — )" —sin(2 A3
e e K
and
0*ly=, =0. (A.4)
Now the complex temperature is defined as
W= 0+i0* (A.5)
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whereby the complex problem becomes

oy
==y (A.6)

with boundary conditions

Y . 2 2 {sin{ng/2)
W—Bl':l[ls‘; Z{ “exp

¢ n=1

((— 1)"i2nn‘c)}] (A7)
n
and
Yly=u=0. (A8)
In order to simplify the further procedure, we may discard
the term (—1)". This is feasible because we can solve any

complex problem the real part of which represents the
original problem. Thereby equation (A.7) becomes

id;; = Bi |E//s —% i {m exp(i2nnr)}:|. (A.9)

n=1
Being only interested in the periodic steady state we set

= i {(D,,(y)ij)/Z)exp(iZnnr)}. (A.10)
n=1

Iz
Inserting this into equation (A.6) we obtain

x i 2 dz(D,,
¥ {Ln(ﬂ(p/—) exp(iZnnr)[iZnn(Dn - de]} =0 (Alb
n

n=1
which for all times t can have a non-trivial solution only if
d*o,

dy?

—i2nn®, = 0. (A.12)

The solution to this ordinary differential equation is
@, = By nexp[Y/(i2nn)] + By, exp[— Y /(i27m)]. (A.13)
Equations (A.8) and (A.10) yield

B;,=0
so that
®, = B,exp{ — Y. /(i2nn)) (A.14)
and
do, .
ar |ye = —B, /(i2nn). (A.15)

The B, have to be evaluated from the boundary condition
(A.9) and after some complex algebra we find that

2 (\/(nn)/Bi+ 1 —i/(nn)/Bi
"T (1 +2/(rn)/Bi+ 27n/Bi? )
Inserting equation (A.16)into (A.14) and the latter into (A.10)
yields

2 2 {sintne/2) 1+ /(nn)/Bi—i/(nn)/Bi
) { n 142 (zn)Bi+2nn/Bi?

Tn=1

(A.16)

x exp[ - Y /(nm)]-exp {i[2nnt — Y\/(nn)]}}. (A17)

It may easily be verified that the real part of equation (A.17)
is identical to equation (5), i.e.

Ae(P) = 0(z, Y).

APPENDIX B
The Laplace transform of equation (1) is
AT s

it it =o.
o &

ay? B

Normalizing T(y. s) on the constant initial temperature level
T(y,0) yields
T s

ay? a

T=0

with the solution

T(y,s) = Dy(s)exp[y/(s/a)] +Dals)exp[ — y /(s/2)]. (B.2)
From boundary condition (3) it follows that
Di(s)=0

and

T(y,s) = D(s)yexp[ —y /(s/2)]. (B.3)
The heat flux in the Laplace domain is defined as

s = —k -
hence
D(s) = 40, 5) \J(a's)/k. (B.4)

The final solution in terms of the heat flux on the surface
becomes

— 1
T(y, s} = q(0,s) P Jjsyexp[ —yJsiw)].  (B.S)

The inversion proceeds via the convolution integral: De-

noting the transform with ¥ and the inverse with ¢!
the following relation holds:

’ U fatt=n 2 gt 1]} d}
[
= £[q(t,0)] 1 yls, 1]

The RHS is identical to equation (B.5); with

1
Y”‘[g(s,y)]=;\/(%)ev<p[—y2x{4m)] (B.7)

(B.6)

the solid temperature becomes

i ‘ [
Ton) =~ )| gt =) — exp[~y*da)]dr. (BS)
k n 0 \/’l/

At the surface this simplifies to

1 ! |
T(O,1) = Ty(r) = . \/(%) J qx(tvr/)——’,—, dn. (B.9)
0 VRS

Thereby boundary condition (2) becomes

h ! |
qs(1) =hT,—hT, = hT,—— \/(E) J gt —v)——duv. (B.10)
k 1 0 V'U

From this equation a forward-marching process is developed
as follows:

On dropping the index s and letting time run in discrete
intervals of length A, i.e.

t—=nAL0,1,2,... 5. L0,
we get

h,, x At 1 RAYS 1
Gn =y Ty —— - Gn-——dv + (-1, drd...
k T 0 VAl At WV

[[RY)

At 1 1
o+ q::+1~j7,d"+...+j gy~ duz
(-t N n—har P

here the subscript n denotes the value of g, h or T, during
the nth interval. The surface flux during the jth interval is
approximated by

(B.11)

‘]:’j* liq"’l
2

which proved to be accurate enough for our purpose. As it is
assumed to be independent of time equation (B.11) can be
integrated so that

h, alAny 2
N | e
1 . 1\'\/<71>j§1

X AGnsy -+ an-) (Vi = VU= D]
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In explicit form this becomes
Hy 1 oAt
iy = ——————— | Tpon — - e
, Al ’ k n
T+ =
k

Fid
X<(/n—1+z {(L!nﬂfj+(1n—j)[\/’j—\/(j*1)]}):" (B.13)
=2

The starting values at the beginning of the heating period are
4o = hy Ty2 and ¢, from equation (B.12).

Some care has to be taken at the switching point (/At).
Assuming a switching from T, to T, (and h, to h;) one
obtains the surface temperature at the end of the last “old”
interval from

Ti=Tu—q/hs. (B.14)

Then, at time (not interval) IAr a new heat flux g, is

evaluated,

gi- =h (T = T) (B.15)

which has to be used in the mean value of g;+,. The pro-
cedure may be clarified by writing the terms around the
switching point:

hy

1+hl \/ aAt
k n
1 alt ,
x [7;11 "k\/<7) (e + G+ a0 [(V2) = 1]

gt g-)G3-JD+ ...

Ji+2 =

g g [+ = U+ 1)]}]. (B.16)

Hence, depending on whether the considered interval is left
or right of the switch-over point, we have to employ two
different values for the heat flux.

SUR LE COEFFICIENT DE TRANSFERT MOYEN DANS UN
ECHANGE PERIODIQUE DE CHALEUR: SOLIDE SEMI-INFINI

Resume-— Prolongement de travaux antérieurs, cette étude décrit I'échange de chaleur périodique entre
un gaz et un solide semi-infini. La phase gazeuse subit un changement discontinu de température, la
valeur du saut étant pris comme variable indépendante. Une condition a la limite de troisieme espéce est
imposée et on effectue une résolution analytique du probléeme dans le cas d’un coefficient de transfert de

chaleur indépendant du temps.

Une situation plus proche de la réalité, dans laquelle le coefficient de transfert varie avec la température
du gaz, est alors résolue par une méthode de progression numérique pas a pas. Ces résultats numériques
sont corrélés sur la base d’un coefficient de transfert thermique moyen convenable employé dans la
solution analytique. Par suite, les résultats peuvent aisément étre adaptés aux techniques nouvelles destinées

a optimiser les processus d’échange périodique.

UBER DEN MITTLEREN WARMEUBERGANGSKOEFFIZIENTEN BEl PERIODISCHEM
WARMEAUSTAUSCH: HALB-UNENDLICHE SPEICHERMASSE

Zusammenfassung — In Erweiterung einer fritheren Arbeit wird der periodische Warmeaustausch zwischen
einem Gas und einer thermisch dicken Wand untersucht. Die Gastemperatur dndert sich sprungartig,
und das Verhiltnis von Heiz- zu Kiihlzeit ist variabel. Unter einer Randbedingung dritter Art wird eine
geschlossene Ldsung entwickelt, wobei jedoch ein zeitlich konstanter Warmeiibergangskoeffizient

vorausgesezt werden muf3.

Der realistischere Fall, dal der Warmelbergangskoeffizient von der Gastemperatur abhdngt, d.h.
zeitlich verdnderlich ist, wird mit einem Schrittverfahren gelost. Die Korrelation der numerischen
Ergebnisse erfolgt liber einen geeeigneten Mittelwert des Wirmeiibergangskoeffizienten, der in die
analytische Losung eingesetzt werden kann. Damit erhilt man eine geschlossene Form der Losung, die

sich leicht in Optimierungsverfahren fiir periodische Austauschprozesse weiterverarbeiten 1403t

O CPEOJHEM KO3®®ULIMEHTE TEIUIOOBMEHA IIPU NEPHUOJUYECKOM
W3MEHEHUU TEMITEPATYPHI: MOJIVOI PAHUYEHHOE TBEPIOE TEJIO

AnBoTamms — B nanHoi paboTe, SBNsAIOILENCS NPOAOIKEHHEM NIPEABIAYILHUX HCCIEXOBaHHM, ONTHCI-
BaeTcs TEMI006MeH MEXAY ra3oM M NOJyOrpaHHYEHHBIM TBEPABIM TEJIOM IPH NEPHOXHYECKOM H3Me-
HEHMH TeMmrepaTypbl. ['a30Bast a3a mperepneBacT CTYNEHYATOE HIMEHEHHE TEMIIEPATypH!, a JUIHKa
mara sBISETCA TMEPEMEHHON BeSMYMHOM. PaccaMTpHBaeTcsi IPaHHYHOE YCJIOBHE TPETHETO pona U
MOJTy4eHO aHATMTHYECKOE PEILSHHUE 3a0a4M IS Cllyvasi, Koraa koadhuuneHT TemoobMeHa He 3aBUCHT

OT BPEMEHH.

Bonee peanbHblit ciy4aii, koraa ko3pGHUMERT TernjooOMeHa H3MEHAETCS C TEMIIEpATypO# rasa,
PEIAeTCA METOAOM NPAMON TPOrOHKH. ITH YMC/ICHHBIE Pe3yNbTaThl 0606IaI0TCA C yI€TOM COOTBET-
CTBYIOILErO cpenHero koddduumenta TennooOMeHa IS TONYHYEHHs AHATMTHYECKOTO pEIlEHMS.
TakuMm 0Bpa3oM, TOTyueHHbIE PE3YJIbTAThl MOTYT ObITh MCHOJNB30OBaHEl B JalbHERIIMX pacuéTax B

LENAX ONTHMH3ANMH NPOLECCOB TEILIO0OMEHE.,



